Molecular modeling and mutagenesis of gap junction channels.
نویسندگان
چکیده
Gap junction channels connect the cytoplasms of adjacent cells through the end-to-end docking of hexameric hemichannels called connexons. Each connexon is formed by a ring of 24 alpha-helices that are staggered by 30 degrees with respect to those in the apposed connexon. Current evidence suggests that the two connexons are docked by interdigitated, anti-parallel beta strands across the extracellular gap. The second extracellular loop, E2, guides selectivity in docking between connexons formed by different isoforms. There is considerably more sequence variability of the N-terminal portion of E2, suggesting that this region dictates connexon coupling. Mutagenesis, biochemical, dye-transfer and electrophysiological data, combined with computational studies, have suggested possible assignments for the four transmembrane alpha-helices within each subunit. Most current models assign M3 as the major pore-lining helix. Mapping of human mutations onto a C(alpha) model suggested that native helix packing is important for the formation of fully functional channels. Nevertheless, a mutant in which the M4 helix has been replaced with polyalanine is functional, suggesting that M4 is located on the perimeter of the channel. In spite of this substantial progress in understanding the structural biology of gap junction channels, an experimentally determined structure at atomic resolution will be essential to confirm these concepts.
منابع مشابه
Gap junctions of the hippocampal CA1 area are crucial for memory consolidation
Introduction: Gap junctions are specialized cell–cell contacts between eukaryotic cells through which they communicate. This type of communication has the potential to modulate memory process. We evaluated the effects of the gating of the hippocampal CA1 area gap junction channels on memory consolidation, using passive avoidance task. Materials and Methods: 72 adult male Wistar rats were distri...
متن کاملFunctional analysis of human cardiac gap junction channel mutants.
The connexins form a family of membrane spanning proteins that assemble into gap junction channels. The biophysical properties of these channels are dependent upon the constituent connexin isoform. To begin identifying the molecular basis for gap junction channel behavior in the human heart, a tissue that expresses connexin43, we used site-directed mutagenesis to generate mutant cDNAs of human ...
متن کاملGap junction structure: unraveled, but not fully revealed
Gap junction channels facilitate the intercellular exchange of ions and small molecules, a process that is critical for the function of many different kinds of cells and tissues. Recent crystal structures of channels formed by one connexin isoform (connexin26) have been determined, and they have been subjected to molecular modeling. These studies have provided high-resolution models to gain ins...
متن کاملSelective permeability of gap junction channels.
Gap junctions mediate the transfer of small cytoplasmic molecules between adjacent cells. A family of gap junction proteins exist that form channels with unique properties, and differ in their ability to mediate the transfer of specific molecules. Mutations in a number of individual gap junction proteins, called connexins, cause specific human diseases. Therefore, it is important to understand ...
متن کاملMolecular Biological and Biophysical Structure-Function Analyses of Connexin46
..................................................................................................................................... 1 Zusammenfassung ...................................................................................................................... 3 Chapter 1. General Introduction ...............................................................................................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in biophysics and molecular biology
دوره 94 1-2 شماره
صفحات -
تاریخ انتشار 2007